If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9x^2-14x-21=0
a = 9; b = -14; c = -21;
Δ = b2-4ac
Δ = -142-4·9·(-21)
Δ = 952
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{952}=\sqrt{4*238}=\sqrt{4}*\sqrt{238}=2\sqrt{238}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-14)-2\sqrt{238}}{2*9}=\frac{14-2\sqrt{238}}{18} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-14)+2\sqrt{238}}{2*9}=\frac{14+2\sqrt{238}}{18} $
| 12x+12=16x+18 | | x+42+3x+90=180 | | 2=w2 | | 20x+12=86 | | -5x-2x+4=-81 | | H(t)=-4.9t^2+8t+1 | | 2p+3÷4=p÷2 | | k−-2=6 | | 3/5x+1/8=1/10x-1/4 | | P=3t^2-20+47 | | 9x+3=-8x-31 | | w/4=4.3 | | 52-6(x)=10 | | 9x+3=-8-31 | | m/16=-19 | | 10=-v/20 | | c/21=24 | | 2v^2+3v=-31 | | 4y=18.8 | | 7w=30 | | k/4=2.86 | | 150=5(x-60)+50 | | 150=5(x-60)=50 | | 3(2-3k)=20 | | -16k=-4 | | g-8.72=4.23 | | 3.4^n=82.1 | | x=(x^2+x)/40=((x*x*x)-x^2)/41+(x*x*x*x*x*x*x*)+2 | | 9r-8r=9 | | 2x+7-4x+11=18 | | 33=t-301 | | m-703=-142 |